Nástroje pro poznávání mikrosvěta

Speciální teorie relativity:

Rozdíly mezi klasickou Newtonovou mechanikou a Einsteinovou speciální teorií relativity (Galileiho a Lorentzovou transformací) se projeví až pro rychlosti v tělesa vůči vztažné soustavě blízké rychlosti světla c $(3 \cdot 10^8 \text{ m/s})$.

Pohyb relativistických částic v urychlovači.

Doba života mezonů pí z kosmického záření.

Projevy speciální teorie relativity v závislosti na rychlosti.

Kvantová fyzika:

Projeví se až při procesech s přenosem účinku v řádu: $h = 6.626 \cdot 10^{-34} \text{ Js} = 4.14 \cdot 10^{-21} \text{ MeV s}$ Ovlivnění měřeného objektu samotným aktem měření. Principielní neurčitost měření: $dpd x \sim h$ $dEdt \sim h$ Pravděpodobnostní charakter.

Srovnání de Broglieho vlnové délky lambda pro objekty s různou hmotností m (m
e - hmotnost elektronu, mj hmotnost jádra, rj - poloměr jádra)

+

Nebaryonová temná hmota

Hmota (nenulová klidová hmotnost)

Horká temná hmota (HDM) - malá klidová hmotnost → v době krátce po Velkém třesku relativistická Neutrina (pokud mají nenulovou klidovou hmotnost)

Chladná temná hmota (CDM) - větší klidová hmotnos
t \rightarrow i v době krátce po Velkém třesku nerelativistická

WIMP - slabě interagující hmotné částice:

1) částice vycházející z modelů sjednocení interakcí:

Fotina, neutralina, axiony

2) jiné hypotetické částice: těžká neutrina

3) Primordiální černé díry - pozůstatky po Velkém Třesku.

Energie (nulová klidová hmotnost):

Viditelná energie - reliktní fotony

Temná energie - neutrina (pokuď mají nulovou klidovou hmotnost), gravitony, energie vakua (nenulová kosmologická konstanta)

+

Neutrina – klíč k nové etapě fyziky

Standardní model hmoty a interakcí – popíše téměř všechna známá experimentální fakta Experimentální skutečnosti nevysvětlitelné v rámci standardního modelu:

1) Asymetrie mezi výskytem hmoty a antihmoty ve vesmíru

2) Evidence pro existenci oscilací neutrin

3) Anomální magnetický moment mionu

Evidence existence oscilací neutrin → nezachování jednotlivých leptonových čísel - kosmické záření, urychlovače a vzdálené detektory

Bezneutrinový dvojný beta rozpad → nezachování celkového leptonového čísla

Nenulovost hmotnosti neutrina

+

Oscilace neutrin

Kvantová fyzika \rightarrow popis pomocí vlnové funkce (její kvadrát určuje pravděpodobnost výskytu částice Vlnová funkce neutrina je směs různých stavů (v_e, v_µ, v_τ).

Jako příklad – oscilace anti v_{μ} a anti $v_{e:}$

Stav antineutrina je směsí stavu elektronového a mionového:

$$\begin{pmatrix} \overline{\mathcal{P}}_{e} \\ \overline{\mathcal{P}}_{\mu} \end{pmatrix} = \begin{pmatrix} \cos \Theta & \sin \Theta \\ -\sin \Theta & \cos \Theta \end{pmatrix} \begin{pmatrix} \mathcal{P}_{1} \\ \mathcal{P}_{2} \end{pmatrix}$$

Pravděpodobnost přechodu mionového antineutrina v elektronové je:

 $\mathbb{P}(\overline{\mathbb{A}}_{\mu}^{\prime} \rightarrow \overline{\mathbb{A}}_{e}^{\prime}) = \sin^{2} 2\Theta \sin^{2} (1.27 \times \Delta m^{2} \times L/E_{\nu})$

kde $\Delta m^2 = |m_1^2 - m_2^2| [eV^2]$ L – vzdálenost v metrech [m] E_v – energie neutrina [MeV]

Reliktní neutrina

Tři druhy neutrin: v_{e} , v_{μ} , v_{τ}

Vznikla v ranných stádiích Velkého třesku (~1s po začátku). Poměr mezi počtem reliktních fotonů a neutrin je 4:1 → počet neutrin je ~ 100 cm³. Teplota dnes T = 1.9 K Limity na hmotnosti neutrin: $v_e \rightarrow m < 3 \text{ eV}, v_\mu \rightarrow m < 0.19 \text{ MeV}, v_\tau \rightarrow m < 18.2 \text{ MeV}$ Oscilace atmosférických a slunečních neutrin $\Delta m \sim 0.001 - 0.1 \text{ eV}^2$

Řada podzemních neutrinových experimentů:

+

Neutrina ze Slunce - neutrina vznikají v průběhu termojaderných reakcí na Slunci: většinou v procesech pp-cyklu, část i v procesu CNO cyklu (produkce neutrin - pozitronový rozpad beta jader ¹³N, ¹⁵O a ¹⁷F) – vyšší energie neutrin Energie neutrin až přes 10 MeV – velmi rychle klesá jejich počet:

energie slunečních neutrin \rightarrow různý způsob detekce

1. Experimenty založené na interakci neutrina s jádrem chloru ($E \ge 0.8$ MeV):

$v_e + {}^{37}Cl + \rightarrow {}^{37}Ar + e^{-}$

R. Davis (od r. 1968) ve starém dole v Homestake v Jižní Dakotě (600 t CCl₄). První informace o deficitu neutrin.

2. Experimenty gáliové (dostupná nižší $E \ge 0.2$ MeV) - GALLEX a GNO v Gran Sasso (Itálie), SAGE v Baksanu (Rusko).

$$v_e + {}^{71}Ga + \rightarrow {}^{71}Ge + e^{-1}Ge$$

 Experimenty využívající Čerenko-vova záření (rychlé nabité leptony vzniklé v reakcích neutrin s jádry) ve vodě (E ≥ 7 MeV) a těžké vodě – Superkamiokande v Japonsku, SNO v Ontáriu

Vnitřek detektoru Superkamiokande (Jap.):

- 1. Připravované experimenty:
- 2. Rozptyl neutrin na elektronech (sup-ratekuté ⁴He T= 2.1 K) HERON: Měří se neutrina i s velmi nízkou energií. Měření energie předané elektronu. Problémy s šumem

Fungující detektory pozorují menší množství neutrin oproti slunečním modelům (SNU – Solar Neutrino Unit – 10^{-36} int·Nt⁻¹s⁻¹):

Experiment	E _{MIN} [MeV]	Experiment [SNU]	Model [SNU]	Exp./Mod.
Kamiokande	7	0.47(2)	1.00(17)	0.47
Homestake (Cl)	0.8	2.56(23)	7.7(12)	0.33
GALEX	0.2	74(7)	129(8)	0.57
SAGE	0.2	75(8)	129(8)	0.58

Data jsou z přednášky J.N. Bahcalla: Nucl. Phys.B(Proc. Suppl.) 91, s. 9

Možná vysvětlení:

- 1. Nepřesnosti modelů Slunce
- 2. Nepřesnosti ve znalosti účinných průřezů jaderných reakcí
- 3. Nové vlastnosti neutrin (oscilace)

Tak velký rozdíl a jeho závislost na energii neutrin vylučuje vysvětlení úpravou slunečního modelu a svědčí pro existenci oscilací neutrin $\nu_e \rightarrow \nu_\mu (\nu_\tau)$ s $\Delta m^2 \leq 10^{-5} \text{ eV}^2$.

Dosavadní informace:

1. Neutrina ve Slunci opravdu vznikají

2. Významný rozdíl mezi předpověďmi a pozorováními \rightarrow signál nové fyziky (oscilace neutrin) Budoucí informace z neutrin:

- 1. Přesný rozměr centrální oblasti Slunce, kde probíhají termojaderné reakce
- 2. Současný obraz centra Slunce (fotony putují z jádra ven velmi dlouho) předpověď budoucího chování Slunce
- 3. Teplota centrálních oblastí Slunce
- 4. Poměry mezi zastoupeními různých typů fúzních reakcí

Neutrina z kosmického záření – dvě složky

a. Primární složka: částice s vysokou energií (až ~ 10¹¹ GeV – dnešní urychlovače ~ 10⁴ GeV), největší část jsou protony a jádra, část i neutrina a anti neutrina v_e, v_μ a v_τ. Izotropní rozložení – přichází ze všech směrů
 Původ: vzdálenější nerozlišitelné zdroje (supernovy, aktivní já-

dra galaxií, kolabující objekty ...). Interakce částic kosmického záření s $E \ge 10^{10}$ GeV s fotony reliktního záření \rightarrow neutrina s

 $E\approx 10^8-10^{13}\,\text{GeV}$

b. Sekundární složka: Srážky částic a jader kosmického záření s jádry atmosféry \rightarrow spousta hadronů \rightarrow mezi nimi spousta mezonů π :

$$\pi^{-} \rightarrow \mu^{+} + \nu_{\mu} \qquad \pi^{-} \rightarrow \mu^{-} + \operatorname{anti} - \nu_{\mu}$$

$$\downarrow \rightarrow e^{+} + \nu_{e} + \operatorname{anti} - \nu_{\mu} \qquad \downarrow \rightarrow e^{-}$$

 $L \rightarrow e^{-} + anti - v_e + v_{\mu}$

Intenzivní zdroj neutrin a antineutrin $v_{\mu} a v_{e}$

poměr mezi počtem v_{μ} a v_e je $R(v_{\mu}/v_e) = 2$

zároveň intenzivní zdroj mionů Neutrina při výbuchu supernovy:

a. Neutrina vznikají při záchytu elektronů protony:

$$p + e^{-} \rightarrow n + \nu_e$$

v průběhu přeměny normální hvězdy na neutronovou, energie v řádu MeV

b. Během kolapsu hvězdy \rightarrow velmi horká a hustá hmota \rightarrow produkce částic i s velmi vysokou energií (i neutrin a antineutrin ν_e , ν_μ a ν_τ). Střední energií neutrin 10 – 15 MeV. Energetické spektrum \rightarrow Fermiho rozložení kT \approx 3 – 6 MeV

Supernova SN1987A

Vzdálenost 150 000 svět. let

Detekce neutrin experimentem IMB, Kamiokande, Baksan a Mt. Blank - souhlas mezi experimenty Energie neutrin $(3-6) \cdot 10^{45}$ J a trvání neutrinového pulsu 13 s

Dosavadní informace (supernova SN1987A):

- 1. Potvrzení vzniku neutrin
- 2. Řádový souhlas s předpoklady
- 3. Blízkost rychlosti neutrin rychlosti světla, omezení na klidovou hmotnost neutrina
- 4. Určena limita pro dobu života neutrina

Možná budoucí informace (čekáme na blízkou supernovu):

- 1. Potvrzení modelů výbuchu supernovy
- 2. Chování horké a velmi stlačené hmoty
- 3. Pozorování supernov zastíněných galaktickou hmotou

Reliktní neutrina

pocházejí z počátku velkého třesku t ~ 1s (t ~ 300 000 let pro reliktní fotony), nynější teplota neutrin je T \approx 1.9 K (fotony T \approx 3.1 K)

Pro energie E > 1 MeV se nachází různé typy neutrin v rovnováze:

kde i = e, μ , τ pro nižší energie neutrina neinteragují s ostatní hmotou- vymrzají Velmi nízká energie \rightarrow velké problémy s detekcí Možnosti detekce (zatím jen v úvahách): 1. Procesy, které nepotřebují energii – neutrino iniciuje rozpad jádra rozpadající se rozpadem beta:

$$v_e + n \rightarrow p^+ + e^-$$

Energie elektronu > energie rozpadu jádra \rightarrow pík ve spektru elektronů za koncem Fermiho grafu (velmi slabý). Měření jako při určování hmotnosti neutrin – nutnost najít vhodná jádra a přechody, aby počet rozpadů díky reliktním neutrinům nebyl zanedbatený. Potřeba zlepšit parametry elektronových spektrometrů. Problémy s pozadím.

- 2. Interakce urychlených částic energii dodají urychlené částice. Výběr vhodných parametrů pro dostatečnou pravděpodobnost interakce problém s pozadím, potřeba vysoká intenzita a stabilita svazku urychlovače.
- 3. Interakce velmi energetických neutrin kosmického záření: Ev taková, aby při srážce s reliktním neutrinem byla v těžišti energie rovna klidové hmotnosti Z bosonu M_Z = 100 GeV (10¹² 10¹⁶ GeV skutečná hodnota závisí na hmotnosti neutrina) → dojde k rezonančnímu zvýšení interakce s reliktními neutriny → minimum v energetickém spektru vysokoenergetických kosmických neutrin

+

Neutrina ze Slunce

Neutrina vznikají v průběhu termojaderných reakcí na Slunci: Většinou v procesech pp-cyklu:

ppI:

$$p + p \rightarrow d + e^{+} + v_{e}$$

$$p + d \rightarrow {}^{3}\text{He} + \gamma$$

$${}^{3}\text{He} + {}^{3}\text{He} \rightarrow {}^{4}\text{He} + p + p$$

ppII nebo ppIII:

$${}^{4}\text{He} + {}^{3}\text{He} \rightarrow {}^{7}\text{Be} + \gamma$$

$${}^{7}\text{Be} + e \rightarrow {}^{7}\text{Li} + \nu_{e} \text{ nebo } {}^{7}\text{Be} + p \rightarrow {}^{8}\text{B} + \gamma$$

$${}^{7}\text{Li} + p \rightarrow {}^{8}\text{Be} + \gamma \text{ nebo } {}^{8}\text{B} \rightarrow {}^{8}\text{Be} + e^{+} + \nu_{e}$$

$${}^{8}\text{Be} \rightarrow {}^{4}\text{He} + {}^{4}\text{He}$$

ale část i v procesu CNO cyklu: (produkce neutrin - pozitronový rozpad beta jader ¹³N, ¹⁵O a ¹⁷F) – vyšší energie neutrin Energie neutrin až přes 10 MeV – velmi rychle klesá jejich počet:

Neutrinový tok [cm⁻²s⁻¹]

- Experimenty založene na interakci neutrina s jadrem chloru (E ≥ 0.8 MeV): v_e + ³⁷Cl + → ³⁷Ar + e⁻
 R. Davis (od r. 1968) ve starém dole v Homestake v Jižní Dakotě (600 t CCl₄). První informace o deficitu neutrin.
- 2. Experimenty gáliové (dostupná nižší $E \ge 0.2$ MeV) GALLEX a GNO v Gran Sasso (Itálie), SAGE v Baksanu (Rusko).

 $\nu_e + {}^{69}\text{Ga} \rightarrow {}^{69}\text{Ge} + e^-$

Experimenty využívající Čerenkovova záření (rychlé nabité leptony vzniklé v reakcích neutrin s jádry) ve vodě ($E \ge 7$ MeV) a těžké vodě – Superkamiokande v Japonsku, SNO v Ontáriu

- 1. Připravované experimenty:
- 2. Rozptyl neutrin na elektronech (supratekuté ⁴He T= 2.1 K) HERON: Měří se neutrina i s velmi nízkou energií. Měření energie předané elektronu. Problémy s šumem

Fungující detektory pozorují menší množství neutrin oproti slunečním modelům (SNU – Solar Neutrino Unit – 10^{-36} int·Nt⁻¹s⁻¹):

Experiment	E _{MIN} [MeV]	Experiment [SNU]	Model [SNU]	Exp./Mod.
Kamiokande	7	0.47(2)	1.00(17)	0.47
Homestake (Cl)	0.8	2.56(23)	7.7(12)	0.33
GALEX	0.2	74(7)	129(8)	0.57
SAGE	0.2	75(8)	129(8)	0.58

Data jsou z přednášky J.N. Bahcalla: Nucl. Phys.B(Proc. Suppl.) 91, s. 9

Možná vysvětlení:

- 1. Nepřesnosti modelů Slunce
- 2. Nepřesnosti ve znalosti účinných průřezů jaderných reakcí

3. Nové vlastnosti neutrin (oscilace)

Tak velký rozdíl a jeho závislost na energii neutrin vylučuje vysvětlení úpravou slunečního modelu a svědčí pro existenci oscilací neutrin $v_e \rightarrow v_{\mu} (v_{\tau})$ s $\Delta m^2 \leq 10^{-5} \text{ eV}^2$.

Dosavadní informace:

1. Neutrina ve Slunci opravdu vznikají

2. Významný rozdíl mezi předpověďmi a pozorováními \rightarrow signál nové fyziky (oscilace neutrin) Budoucí informace z neutrin:

- 1. Přesný rozměr centrální oblasti Slunce, kde probíhají termojaderné reakce
- 2. Současný obraz centra Slunce (fotony putují z jádra ven velmi dlouho) předpověď budoucího chování Slunce
- 3. Teplota centrálních oblastí Slunce
- 4. Poměry mezi zastoupeními různých typů fúzních reakcí

Neutrinová astrofyzika – důležitost nepolapitelné nicky

Neutrina ze Slunce - neutrina vznikají v průběhu termojaderných reakcí na Slunci:

většinou v procesech pp-cyklu, část i v procesu CNO cyklu (produkce neutrin - pozitronový rozpad beta jader ¹³N, ¹⁵O a ¹⁷F) – vyšší energie neutrin

Energie neutrin až přes 10 MeV – velmi rychle klesá jejich počet:

energie slunečních neutrin \rightarrow různý způsob detekce

1. Experimenty založené na interakci neutrina s jádrem chloru ($E \ge 0.8$ MeV):

$$v_e + {}^{37}Cl + \rightarrow {}^{37}Ar + e^{-1}$$

R. Davis (od r. 1968) ve starém dole v Homestake v Jižní Dakotě (600 t CCl₄). První informace o deficitu neutrin.

2. Experimenty gáliové (dostupná nižší $E \ge 0.2$ MeV) - GALLEX a GNO v Gran Sasso (Itálie), SAGE v Baksanu (Rusko).

$$v_e + {}^{71}Ga + \rightarrow {}^{71}Ge + e^{-1}$$

- Experimenty využívající Čerenko-vova záření (rychlé nabité leptony vzniklé v reakcích neutrin s jádry) ve vodě (E ≥ 7 MeV) a těžké vodě – Superkamiokande v Japonsku, SNO v Ontáriu
- 1. Připravované experimenty:
- 2. Rozptyl neutrin na elektronech (sup-ratekuté ⁴He T= 2.1 K) HERON: Měří se neutrina i s velmi nízkou energií. Měření energie předané elektronu. Problémy s šumem

Fungující detektory pozorují menší množství neutrin oproti slunečním modelům (SNU – Solar Neutrino Unit – 10^{-36} int·Nt⁻¹s⁻¹):

Experiment	E _{MIN} [MeV]	Experiment [SNU]	Model [SNU]	Exp./Mod.
Kamiokande	7	0.47(2)	1.00(17)	0.47
Homestake (Cl)	0.8	2.56(23)	7.7(12)	0.33
GALEX	0.2	74(7)	129(8)	0.57
SAGE	0.2	75(8)	129(8)	0.58

Data jsou z přednášky J.N. Bahcalla: Nucl. Phys.B(Proc. Suppl.) 91, s. 9

Možná vysvětlení:

- 1. Nepřesnosti modelů Slunce
- 2. Nepřesnosti ve znalosti účinných průřezů jaderných reakcí
- 3. Nové vlastnosti neutrin (oscilace)

Tak velký rozdíl a jeho závislost na energii neutrin vylučuje vysvětlení úpravou slunečního modelu a svědčí pro existenci oscilací neutrin $v_e \rightarrow v_{\mu} (v_{\tau})$ s $\Delta m^2 \leq 10^{-5} \text{ eV}^2$.

Dosavadní informace:

- 1. Neutrina ve Slunci opravdu vznikají
- 2. Významný rozdíl mezi předpověď mi a pozorováními \rightarrow signál nové fyziky (oscilace neutrin) Budoucí informace z neutrin:
 - 1. Přesný rozměr centrální oblasti Slunce, kde probíhají termojaderné reakce
 - 2. Současný obraz centra Slunce (fotony putují z jádra ven velmi dlouho) předpověď budoucího chování Slunce
 - 3. Teplota centrálních oblastí Slunce
 - 4. Poměry mezi zastoupeními různých typů fúzních reakcí

Neutrina z kosmického záření – dvě složky

a. Primární složka: částice s vysokou energií (až ~ 10¹¹ GeV – dnešní urychlovače ~ 10⁴ GeV), největší část jsou protony a jádra, část i neutrina a anti neutrina v_e, v_µ a v_τ. Izotropní rozložení – přichází ze všech směrů
 Původ: vzdálenější nerozlišitelné zdroje (supernovy, aktivní já-

dra galaxií, kolabující objekty ...). Interakce částic kosmického záření s $E \ge 10^{10}$ GeV s fotony reliktního záření \rightarrow neutrina s $E \approx 10^8 - 10^{13}$ GeV

b. Sekundární složka:

Srážky částic a jader kosmického záření s jádry atmosféry \rightarrow spousta hadronů \rightarrow mezi nimi spousta mezonů π :

 $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$ $\pi^- \rightarrow \mu^- + anti - \nu_{\mu}$

$$L \rightarrow e^{+} + v_{e} + anti-v_{\mu} \qquad L \rightarrow e^{-} + anti-v_{e} + v_{\mu}$$

Intenzivní zdroj neutrin a antineutrin $\nu_{\mu}\,a\,\nu_{e}$

poměr mezi počtem $v_{\mu} a v_e$ je $R(v_{\mu}/v_e) = 2$

zároveň intenzivní zdroj mionů Neutrina při výbuchu supernovy:

- a. Neutrina vznikají při záchytu elektronů protony:
 - $p + e^- \rightarrow n + v_e$

v průběhu přeměny normální hvězdy na neutronovou, energie v řádu MeV

b. Během kolapsu hvězdy \rightarrow velmi horká a hustá hmota \rightarrow produkce částic i s velmi vysokou energií (i neutrin a antineutrin ν_e , ν_μ a ν_τ). Střední energií neutrin 10 – 15 MeV. Energetické spektrum \rightarrow Fermiho rozložení kT \approx 3 – 6 MeV

Supernova SN1987A

Vzdálenost 150 000 svět. let

Detekce neutrin experimentem IMB, Kamiokande, Baksan a Mt. Blank - souhlas mezi experimenty Energie neutrin (3-6)·10⁴⁵ J a trvání neutrinového pulsu 13 s

Dosavadní informace (supernova SN1987A):

- 1. Potvrzení vzniku neutrin
- 2. Řádový souhlas s předpoklady
- 3. Blízkost rychlosti neutrin rychlosti světla, omezení na klidovou hmotnost neutrina
- 4. Určena limita pro dobu života neutrina

Možná budoucí informace (čekáme na blízkou supernovu):

- 1. Potvrzení modelů výbuchu supernovy
- 2. Chování horké a velmi stlačené hmoty
- 3. Pozorování supernov zastíněných galaktickou hmotou

Reliktní neutrina

pocházejí z počátku velkého třesku t ~ 1s (t ~ 300 000 let pro reliktní fotony), nynější teplota neutrin je T \approx 1.9 K (fotony T \approx 3.1 K)

Pro energie E > 1 MeV se nachází různé typy neutrin v rovnováze:

$$e^+ + e^- \leftrightarrow \mathcal{P}_i + \overline{\mathcal{P}}_i$$

kde i = e, μ , τ

pro nižší energie neutrina neinteragují s ostatní hmotou- vymrzají

Velmi nízká energie → velké problémy s detekcí Možnosti detekce (zatím jen v úvahách):

1. Procesy, které nepotřebují energii – neutrino iniciuje rozpad jádra rozpadající se rozpadem beta:

$$\nu_e + n \rightarrow p^+ + e^-$$

Energie elektronu > energie rozpadu jádra → pík ve spektru elektronů za koncem Fermiho grafu (velmi slabý). Měření jako při určování hmotnosti neutrin – nutnost najít vhodná jádra a přechody, aby počet rozpadů díky reliktním neutrinům nebyl zanedbatený. Potřeba zlepšit parametry elektronových spektrometrů. Problémy s pozadím.

2. Interakce urychlených částic – energii dodají urychlené částice. Výběr vhodných parametrů pro dostatečnou pravděpodobnost interakce – problém s pozadím, potřeba vysoká intenzita a stabilita svazku urychlovače.

Interakce velmi energetických neutrin kosmického záření: E_v taková, aby při srážce s reliktním neutrinem byla v těžišti energie rovna klidové hmotnosti Z bosonu $M_Z = 100$ GeV $(10^{12} - 10^{16}$ GeV – skutečná hodnota závisí na hmotnosti neutrina) \rightarrow dojde k rezonančnímu zvýšení interakce s reliktními neutriny \rightarrow minimum v energetickém spektru vysokoenergetických kosmických neutrin

Nukleosyntéza ve hvězdách - hvězdy jako továrny na výrobu prvků

Po velkém třesku byl ve vesmíru vodík, 23 % helia, něco deuteria a lithia. Všechny ostatní prvky vznikly v průběhu dalšího období ve hvězdách během jejich evoluce.

Jaderné reakce ve hvězdách:

- 1. Odpovídají za zastoupení prvků ve vesmíru
- 2. Jsou zdrojem energie ve hvězdách

Základní reakce H \rightarrow He – reakce jader vodíku (proton -protonová reakce) nebo reakce jader vodíku s těžšími prvky – působí jako katalyzátory (CNO cyklus)

p-p řetězec: $^{1}\text{H} + ^{1}\text{H} \rightarrow ^{2}\text{D} + e^{+} + v_{e}$ Q = +1.44 MeV $^{2}\text{D} + ^{1}\text{H} \rightarrow ^{3}\text{H} + \gamma$ O = +5.94 MeV $^{3}\text{He} + ^{3}\text{He} \rightarrow ^{4}\text{He} + 2^{1}\text{H}$ O = +12.85 MeVuplatňuje se při T = $10^{6.8}$ K – $10^{7.2}$ K CNO cyklus: $^{12}C + {}^{1}H \rightarrow {}^{13}N + \gamma$ O = +1.95 MeV $^{13}N \rightarrow ^{13}C + e^+ + \nu_e$ Q = +2.22 MeV $^{13}\text{C} + {}^{1}\text{H} \rightarrow {}^{14}\text{N} + \gamma$ Q = +7.54 MeV $^{14}\text{N} + {}^{1}\text{H} \rightarrow {}^{15}\text{O} + \gamma$ O = 7.35 MeV $^{15}\text{O} \rightarrow ^{15}\text{N} + e^+ + v_e$ Q = 2.71 MeV $^{15}N + {}^{1}H \rightarrow {}^{12}C + {}^{4}He \quad Q = 4.96 \text{ MeV}$ uplatňuje se při T = $10^{7.2}$ K – $10^{7.7}$ K Při ještě vyšších teplotách (T = 10^{8} K) - 3α -proces (Salpeterův): ${}^{4}\text{He} + {}^{4}\text{He} \rightarrow {}^{8}\text{Be} + \gamma$ O = -0.095 MeV $^{8}\text{Be} + {}^{4}\text{He} \rightarrow {}^{12}\text{C} + \gamma$ Q = +7.5 MeVJeště vyšší teploty \rightarrow vznik ¹⁶O, ²⁰Ne, ²⁴Mg ... dalším spalováním helia, spalování ¹²C Větší hmotnost hvězdy → větší teplota v nitru → rychlejší průběh reakcí → rychlejší vydělování energie \rightarrow vývoj hvězdy je rychlejší Na vzniku těžších prvků se podílejí (závislost na vazebné energii): α-proces: syntéza prvků pomocí ⁴He procesem (α,γ), vznikajv jádra až po ⁴⁰Ca (T = 10^9 K) e-proces: $T = 4 \cdot 10^9 K$ a N_p/N_n = 300 \rightarrow vznik prvků skupiny železa: V, Cr, Mn, Fe, Co, Ni s-proces: záchyt neutronů jádry lehkých prvků nebo prvků skupiny železa. (pomalý "slow" vůči

rozpadu beta)

r-proces: hodně neutronů \rightarrow záchyt neutronů probíhající rychle ("rapid") vzhledem k rozpadu beta \rightarrow vznik těžkých prvků

p-proces: prostředí plné vodíku \rightarrow vznik vzácnějších lehkých prvků (T = 2.5·10⁹K)

Intenzivní vznik těžkých prvků - výbuchy supernov

+

Optický model

Při hrubém středování excitační funkce se ukáže i rozdělení vykazující ve směru dopadu maxima vznikající při ohybu → potenciálový rozptyl. Kromě potenciálového rozptylu je třeba popsat i pohlcení dopadající částice (vznik složeného jádra).

Lze popsat optickým modelem:

Předpoklad: jádro je spojité prostředí, které láme a absorbuje de Broglieho vlny dopadajících částic. Limitní případ je model černého tělesa → jádro pohlcuje všechny dopadající částice

Zjednodušení: reakce dopadající částice s jádrem se aproximuje rozptylem a pohlcením částice silovým centrem

Problém $A_1 + A_2$ částic \rightarrow problém dvou částic

Hledá se tvar středního potenciálu (optický potenciál) U(r) vytvářený silovým centrem, který po dosazení do Schrődingerovi rovnice a splnění okrajových podmínek dává přímo střední hodnotu amplitudy rozptylu.

Optický potenciál zavedeme jako empirický potenciál. Volba parametrů \rightarrow spočítání diferenciálního účinného průřezu \rightarrow porovnání s experimentálním úhlovým rozdělením.

Přítomnost absorbce \rightarrow komplexní člen \rightarrow U(r) = V(r) + iW(r)

Reálná část V(r) má tvar potenciálu slupkového modelu (nejča-stěji Woodsova-Saxonova tvaru se započtením spin-orbitální interakce)

Imaginární část: Nízké energie \rightarrow převaha absorbce na povrchu

Vyšší energie ($\geq 80 \text{ MeV}$) \rightarrow převaha absorbce v objemu

Při konkrétních výpočtech je třeba započítat vliv coulombovského potenciálu a odstředivého potenciálu.

+

Oscilace neutrin

Atmosférická neutrina:

Detekce neutrin přicházejících zespodu (po průletu Zemí) a shora (proletí různou vzdálenost) Experimenty: Superkamiokande, IMB, Soudan 2

Závislost počtu neutrin na vzdálenosti, kterou proletí (detektor Superkamiokande), e – elektrony z v_e a μ – miony z v_µ

Pozorování:

- 1. Deficit v_{μ}
- 2. Izotropie v_e

Vysvětlení: Oscilace neutrin $v_{\mu} \rightarrow v_{\tau}$ Sluneční neutrina: Pozorování: nedostatek elektronových neutrin. Vysvětlení: oscilace $v_e \rightarrow v_?$ Experimenty na krátkou vzdálenost: zdroj neutrin urychlovač, reaktor Experiment LSND: Urychlovač – zdroj mionových antineutrin

 $\overline{\mathbb{A}}_{\mu}^{*} \to \overline{\mathbb{A}}_{e}^{*}$

Detektor s kapalným scintilátorem - hledání elektronových antineutrin \rightarrow pozorován přebytek \rightarrow pozorovány oscilace $\rightarrow 0.2 \text{ eV}^2 \leq \Delta m^2 \leq 2.0 \text{ eV}^2$ - v rozporu se slunečními daty Potřeba nezávislých ověření ! Experiment KARMEN: Zatím nižší citlivost (oscilace nevidí) \rightarrow na zvětšení citlivosti se pracuje Příprava dalších experimentů: Boone, ORLaND, TOSCA

Podivné částice

1) Nové částice s mnohem delší dobou života ~ 10^{-10} s – rozpadají se pomalu, i když se uvolňuje značná energie.

2) Produkce těchto částic v párech.

3) Neexistence některých typů rozpadů:

Existuje rozpad: $\Sigma^0 \rightarrow \Lambda^0 + \gamma$

S = -1 - 1 0

Neexistuje rozpad: $\Sigma^+ \rightarrow p + \gamma$ S = -1 0 0

 $\downarrow\downarrow\downarrow\downarrow$

Znak existence nového zákona zachování – zákon zachování podivnosti (platí pro silnou a elektromagnetickou interakci, neplatí pro slabou) \rightarrow zavedení veličiny podivnost (S)

I pro slabý rozpad pouze $\Delta S = \pm 1$. Neexistuje rozpad: $\Xi^- \rightarrow n + \pi^-$

Neexistuje rozpad: S = -200

Hyperon (podivný barion) Ξ^{-} se tak rozpadá ve dvou etapách:

 $\Xi \rightarrow \Lambda + \pi^{-1}$

S = -2 - 1 0

 $\Lambda \rightarrow n + \pi^0$

 $S = -1 \ 0 \ 0$

Zavedení hypernáboje: Y = B + S

Izospin:

Nezávislost silné interakce na náboji. \rightarrow proton a neutron jsou dva nábojové stavy jedné částice – nukleonu.

Hodnota izospinu I je taková, že počet jeho průmětů do třetí osy 2I+1 udává počet nábojových stavů. Náboj hadronů :

 $Q = e(I_z + Y/2) = e(I_z + (B+S)/2)$

První podivné částice: K mezony, lambda - přelom 40 a 50 let

Produkce $\Omega^{-}(S=2)$ částice – snímek bublinové komory v CERNu

+

Podstata jaderných sil

V jádře se projevují elektromagnetická interakce (coulombovské odpuzování), slabá (rozpad jader) ale hlavně silná jaderná interakce, která drží jádro pohromadě.

Pro coulombovskou interakci je vazebná energie B $\approx~Z~(Z-1)\to B/Z\approx~Z$ pro velká Z \to nenasycené síly dalekého dosahu

Pro jadernou sílu je vazebná energie B/A $\approx konst - projevuje se krátký dosah a nasycenost jaderných sil Maximální dosah ~1.7 fm$

Jaderné síly jsou přitažlivé (udržují jádro pohromadě), na velmi krátké vzdálenosti (~0.4 fm) se mění v odpudivé (jádro nezkolabuje). Přesnější tvar poteciálu jaderných sil lze získat z rozptylu nukleonů na nukleonech nebo jádrech.

Nábojová nezávislost – účinné průřezy rozptylu nukleonů nezávisí na jejich elektrickém náboji. \rightarrow Pro jaderné síly jsou neutron a proton dva různé stavy jedné částice nukleonu. Pro popis se zavádí nová veličina izospin T. Nukleon má pak izospin T = 1/2 se dvěma možnými orientacemi T_Z = +1/2 (proton) a T_Z = -1/2 (neutron). Formálně nakládáme z izospinem jako se spinem.

Spinová závislost – vysvětluje existenci stabilního deuteronu (existuje jen v tripletním stavu – s = 1 a ne v singletním - s = 0) a neexistenci dvojneutronu. Studujeme v rozptylových experimen-tech s použitím orientovaných svazků a terčů.

Tenzorový charakter – interakce mezi dvěma nukleony závisí na úhlu mezi směrem spinů a spojnicí obou částic.

Kromě silné interakce působí i elektrická síla. Jádro má kladný náboj a pro kladně nabitou částicí vytváří tato síla coulombickou barieru (dosah elektrické síly je větší než silné jaderné). Příslušný potenciál má tvar $V(r) \sim Q/r$.

V případě rozptylu navíc působí odstředivá bariera, daná momentem hybnosti nalétávající částice. Výměnný charakter jaderných sil:

krátký dosah → nenulová klidová hmotnost zprostředkujících částic. Odpovídající potenciál navrhl H. Yukawa

$$V(r) \propto \frac{e^{m \alpha r A}}{r}$$

kde m je hmotnost zprostředkující částice a \hbar /mc je její Comptonova vlnová délka. Položíme Comptonovu délku rovnou dosahu R jaderných sil a určíme hmotnost zprostředkující částice:

$$\mathrm{mc}^{2} = \frac{\hbar \mathrm{c}}{\lambda} \approx \frac{\hbar \mathrm{c}}{\mathrm{R}} = \frac{197 \mathrm{MeV fm}}{1.7 \mathrm{ fm}} \approx 120 \mathrm{MeV}$$

Zprostředkující částice s podobnou hmotností byly nalezeny a označeny jako mezony π . Přitažlivá a odpudivá jaderná síla je tak zprostředkována výměnou nabitých a neutrálních mezonů: p + $\pi^- \rightarrow n$, n + $\pi^+ \rightarrow p$, p + $\pi^0 \rightarrow p$, n + $\pi^0 \rightarrow n$

Protony a neutrony neustále emitují a pohlcují mezony. Proč je nenacházíme s různou hmotností? Princip neurčitosti: $\Delta E\Delta t \ge \hbar \rightarrow Nezachování energie je dovoleno pokud trvá méně než <math>\hbar/\Delta E$. Maximální dosah jaderných sil je R = 1.7 fm. Pak nejmenší doba přeletu nukleonu je: $\Delta t = R/c$. Při emisi fotonu s hmotností m_{π} se nezachovává energie: $\Delta E = m_{\pi}c^2$. Jestliže bude doba existence nezachování energie Δt tak pro maximální možnou energii nezachování (hmotnost mezonu) dostaneme: $m_{\pi}c^2 = \hbar c/R$ (stejný jako výše uvedený)

Nalezeny další mezony (η , ρ , ϕ ...), i dvojmezonová výměna.

+

Detekce neutrin pod zemí

Nutnost odstínění od částic kosmického záření (miony ze sekundární složky) → detektory hluboko do podzemí

Metody detekce:

1. Radiochemické metody: Pro neutrina s nižší energií. Proces obráceného rozpadu beta:

Například: $v_e + {}^{37}Cl \rightarrow 37Ar + e^$ $v_e + {}^{71}Ga \rightarrow {}^{71}Ge + e^-$

- 1. měření radiochemická určení počtu jader vzniklých v reakci s neutrinem Vlastnosti:
 - 1. Detekují se i neutrina s nižší energií
 - 2. Nelze určit přesnou energii neutrina
 - 3. Nelze určit čas interakce
 - 4. Nelze určit směr příletu
- Využití Čerenkovova nebo scintilačního záření: Dostatečná energie k produkci elektronů, mionů či tauonů s v ≈ c

Při v > rychlost světla v daném prostředí \rightarrow Čerenkovovo záření

Ionizační ztráty nabité částice \rightarrow vznik scintilačního světla.

Nádrž s vodou nebo kapalným scintilátorem – na stěnách fotonásobiče pro detekci Čerenkovova nebo scintilačního světla (i obojí)

- 1. Vlastnosti:
 - 1. Potřebná vyšší energie neutrina
 - 2. Možnost určit dobu, směr příletu a energii neutrina
- 2. Návrhy využití rozptylu neutrin na elektronech (ve vývoji):
 - a. HERON měří se energie předaná elektronu malá energie → nutnost potlačit šum → využití supratekutého helia (T= 30 mK) → měření tepelných pulsů.
 - b. HELLAZ komora naplněná heliovým plynem → rozptyl neutrin na elektronech → ionizační ztráty elektronu → záznam jeho dráhy sběrem vzniklých iontů

Rozpínání a chladnutí oblasti horké a husté hmoty

Horká a hustá jaderná hmota expanduje z místa vzniku. Zkoumá se studiem různých hadronů vyletujících z místa srážky (vznikají v různé etapě expanze) - určuje se velikost a rychlost expanze horké oblasti:

- 1. Rozložení složky hybnosti kolmé ke směru srážejících se jáder
- 2. Interferometrie

Experimenty NA44, NA45/CERES, NA49, NA50, NA52, NA57/WA97 a WA98 Příklad: Interferometrie z experimentu NA44

ŧ

+

Naměřené údaje odpovídají plně našim předpokladům o vzniku horké a husté expandující zóny a dynamické vlastnosti jaderné hmoty, která se po srážce rozpíná, splňují naše představy získané z hydrodynamických modelů.

Zkoumání složky energie kolmé ke směru svazku Et umožňuje odhadnout hustotu energie dosaženou ve velmi raném stadiu centrální srážky (výsledek experimentu Na49):

Závislost účinného průřezu sigma na kolmé složce energie E_t vede k hodnotě hustoty energie pro rané stádium centrální Pb+Pb srážky okolo 3 GeV/fermi³. Dostatečná hustota pro vznik QGP. Tlak v takto stlačené a ohřáté hmotě vede k expanzi, vzniku rázové vlny. Horká a hustá hmota expanduje rychlostí přibližně 0.55 c.

Teplota a hustota energie při hadronizaci:

Z poměrů produkce jednotlivých hadronů (experiment NA49): Určená teplota v okamžiku hadronizace je $T_c=176(10)$ MeV a hustota energie 1.1(2) GeV/fermi³.

Zdá se, že pozorování spíše odpovídají tomu, že přechod od QGP k hadronové hmotě není prvního druhu :

- 1. Nepozorování zpomalení expanze během hadronizace a jejího delšího trvání.
- 2. Nepozorování fluktuace teploty a hustoty, při kterých k hadronizaci dochází v jedné srážky ke druhé. Při koexistenci podchlazené QGP a přehřáté hadronové hmoty by k tomu mělo docházet.

Měřením spekter impulsu (jeho složky kolmé ke směru svazku) hadronů můžeme zjistit teplotu v okamžiku jejich vzniku.

Zastoupení různých typů hadronů

Poměr mezi podivnými a nepodivnými hadrony a produkce antihmoty - informace o chemickém (kvarkovém) složení husté a horké hmoty.

Experimentů NA57/WA97, NA49 a NA50 studovaly produkci různých hadronů pro jádro-jaderné srážky. Ty se srovnávaly s produkcí v p-p a p-jaderných srážkách.

Výsledek: počet hadronů s podivností převyšuje počet, jenž vyplývá z předpokladu, že vznikají pouze ve srážkách nukleonů.

Takový narůst podivnosti je velice obtížné vysvětlit v případě, že vzniká pouze jaderná hmota ve stavu hadronového plynu:

Srážky hadronů - velmi malou pravděpodobnost produkce částic s podivností.

Srážky kvarků a gluonů v plazmatu a následná hadronizaci - vysoká pravděpodobnost vzniku podivných částic.

Příklady rozpadů podivných hadronů studovaných v experimentu WA97:

Identifikace částic pomocí invariantních hmotností:

+

Přímé reakce

Přímé reakce (také pružný a nepružný rozptyl) - reakce trvající velmi krátce 10⁻²²s

Reakce strhávání – terčíkové jádro odebírá jeden nebo více nukleonů z projektilu, zbytek projektilu letí dal bez podstatné změny hybnosti - (d,p) reakce.

Reakce vytrhávání – vytržení nukleonu projektilem z jádra

Reakce přenosu – obecně výměna nukleonů mezi terčíkem a projektilem.

Rozdíly ve srovnání s reakcí přes složené jádro:

- a. Úhlové rozdělení je nesymetrické silný vzrůst intenzity ve směru dopadu
- b. Excitační funkce nemá rezonanční charakter
- c. Větší podíl vyletujících částic s vyšší energií
- d. Relativní poměry účinných průřezů různých procesů neodpovídají modelu složeného jádra

Principiálně lze spočítat prvek matice přechodu $H_{fi} \rightarrow lze$ spočítat σ . Účinný průřez lze rozdělit na dvě složky:

$\sigma = S \cdot \ \sigma_{DWBA}$

Část σ_{DWBA} má kinematický charakter – určuje úhlové rozdělení závislém na přenesenou momentu hybností.

Spektroskopický faktor S obsahuje vlnové funkce počátečního a konečného stavu jádra – je určován s experimentu a pak srovnáván s modelovým výpočtem.

Přitom potřebujeme znát σ_{DWBA} . V nejjednodušším případě se vychází z aproximace vlnových funkcí nalétávající a vyletující částice pomocí rovinných vln – Bornovo přiblížení.

Pro částice pod vlivem potenciálu jádra to není přesné → pro vlnové funkce se vezme řešení z rozptylu optickým potenciálem – Bornovo přiblížení s porušenými vlnami (DWBA – Distorted Wave Born Aproximation)

.-.-.-

Průběh primordiální nukleosyntézy

Množství primordiálního ⁴He (~25%), D, ³H a ³He (malé příměsi) jsou dány podílem baryonové hmoty (svítící i temné) na celkové hustotě hmoty:

Menší podíl baryonové hmoty = méně 4 He, D, 3 H and 3 He

Experimentální zastoupení ⁴He a D vymezuje množství baryonové hmoty:

$$\Omega_b = 0.05 \pm 0.01$$

Ovlivněno i existencí nebaryonových forem temné hmoty - možnost přeohřáti, fluktuace z fázového přechodu od kvark-gluonového plazmatu k normální hmotě

.-.-.-

Princip detailní rovnováhy

Nízkoenergetické reakce \rightarrow energie interakce $H_{int} \ll$ energie celé soustavy \rightarrow lze pro určení pravděpodobnosti P_{if} přechodu od stavu φ_i ke stavu φ_f použít zlaté pravidlo poruchového počtu:

$$P_{if} = \frac{2\pi}{\hbar} |H_{if}|^2 \frac{dr}{dE_0}$$

Kde H_{fi} je maticový element přechodu:

$$\mathbf{H}_{\mathbf{fi}} = \left\langle \mu_{f}^{2} \left| \mathbf{H}_{\mathbf{int}} \right| \mu_{f}^{2} \right\rangle = \int \mu_{f}^{2} \mathbf{H}_{\mathbf{int}} \mu_{f}^{2} d\mathbf{V}$$

V objemu V je počet dn stavů (elementárních buněk po jedné částici s hybností p, $p+\Delta p$):

$$d \mathcal{P} = \frac{V \cdot 4 \pi p^2 dp}{h^3} = \frac{4 \pi V p^2 dp}{(2 \pi \hbar)^3}$$

a tedy:

$$\frac{\mathrm{d}\,\mathbf{F}}{\mathrm{d}\mathrm{E}_{0}} = \frac{1}{\mathrm{d}\mathrm{E}_{0}} \frac{4\,\pi\,\mathrm{Vp}^{2}\mathrm{dp}}{\left(2\,\pi\,\hbar\right)^{3}}$$

dále uvažujme reakci A(a,b)B v těžišťové soustavě:

V konečném stavu platí: $\vec{p}_b = -\vec{p}_B \rightarrow \text{pouze jedna nezávislá hybnost (zvolme p_b).}$ Jestli dE₀ = dE_b+dE_B:

$$\frac{\mathrm{d}\mathcal{N}}{\mathrm{d}\mathrm{E}_{0}} = \frac{1}{\mathrm{d}\mathrm{E}_{b} + \mathrm{d}\mathrm{E}_{B}} \frac{4\,\pi\,\mathrm{Vp}_{b}^{2}\mathrm{d}\mathrm{p}_{b}}{\left(2\,\pi\,\hbar\right)^{3}}$$

Dosadíme za dE=(p/m)dp:

$$dE_{b} + dE_{B} = \frac{p_{b}}{m_{b}}dp_{b} + \frac{p_{B}}{m_{B}}dp_{B} = \left(\frac{1}{m_{b}} + \frac{1}{m_{B}}\right)p_{b}dp_{b} = \frac{1}{m_{f}}p_{b}dp_{b}$$

Kde m_f je redukovaná hmotnost konečného stavu. Pak dostaneme:

$$\frac{\mathrm{d}\,\mathbf{x}}{\mathrm{d}\mathrm{E}_{0}} = \frac{4\,\mathbf{x}\,\mathrm{V}}{\left(2\,\mathbf{x}\,\hbar\right)^{3}}\,\mathrm{m}_{\mathrm{f}}\,\mathrm{p}_{\mathrm{b}}$$

Má-li částice (fermion) spin I, podle Pauliho principu může být v každém stavu 2I+1 částic. Platí to pro oba produkty reakce:

$$\frac{d \mathcal{F}}{dE_0} = \frac{4 \pi V}{(2 \pi \hbar)^3} (2I_b + 1)(2I_B + 1)m_f p_b$$

Dosadíme do výrazu pro pravděpodobnost:

$$P_{if} = \frac{2\pi}{\hbar} |H_{if}|^2 \frac{4\pi V}{(2\pi\hbar)^3} (2I_b + 1)(2I_B + 1)m_f p_b$$

Vztah mezi diferenciálním účinným průřezem a pravděpodobností přechodu:

$$\left(\frac{d\ \sigma}{d\Omega}\right)_{g} = \frac{(\mathbf{P}_{if})_{g}}{j} = \frac{\mathbf{P}_{if}}{j}$$

kde (P_{if})_{theta} =(1/4 π) P_{if} pravděpodobnost vztažená na jednotku prostorového úhlu. Hustota toku dopadajících částic:

$$\mathbf{j} = \mathbf{N}\mathbf{v}_{\mathbf{i}}$$

kde v_i je rychlost dopadajících částic a N je jejich počet v jednotce objemu. Vztahneme-li jej na jednu dopadající částici:

$$N=1/V \rightarrow j=v_i/V$$

Potom

$$\left(\frac{d \sigma}{d\Omega}\right)_{g} = \frac{P_{if} V}{4 \pi v_{i}} = \frac{P_{if} V m_{i}}{4 \pi p_{i}}$$

Kde m_i je redukovaná počáteční hmotnost (jádro považujeme za nehybné, takže v_i je vzájemná rychlost). Dosadíme za P_{if}:

$$\left(\frac{d \sigma}{d\Omega}\right)_{g} = \frac{(2I_{b} + 1)(2I_{B} + 1)}{(2 \pi)^{2} \hbar^{4}} \left|H_{fi}\right|^{2} m_{i} m_{f} \frac{p_{f}}{p_{i}}$$

Člen V² se pokrátil s faktorem $1/V^2$, který se objeví před členem $|H_{\rm fi}|$ v případě normování vlnových funkcí členem $1/\sqrt{V}$. Úhlová závislost je plně obsažena zcela v $|H_{\rm fi}|$. Odvodíme obdobný vztah pro inverzní proces. Jestliže:

$$|H_{\rm if}|^2 = |H_{\rm fi}|^2$$

spočteme poměr obou účinných průřezů:

$$\frac{\sigma_{\mathbf{i} \to \mathbf{f}}}{\sigma_{\mathbf{f} \to \mathbf{i}}} = \frac{(2\mathbf{I}_{\mathbf{b}} + 1)(2\mathbf{I}_{\mathbf{B}} + 1)\mathbf{p}_{\mathbf{f}}^2}{(2\mathbf{I}_{\mathbf{a}} + 1)(2\mathbf{I}_{\mathbf{A}} + 1)\mathbf{p}_{\mathbf{i}}^2}$$

Tento vztah se nazývá princip detailní rovnováhy jaderné reakce. Je-li v malé oblasti energií $|H_{\rm fi}|^2$ konstantní, dostáváme:

$$\sigma = \text{konst} \frac{p_f}{p_i}$$

Podívejme se na různé typy reakcí:

a) Pružný rozptyl nenabitých částic $\rightarrow v_a = v_b \rightarrow \sigma = \text{konst} \rightarrow \text{nezávisí na rychlosti } v_a$ b) Exotermní reakce buzené tepelnými neutrony $\rightarrow Q \approx 1$ MeV a energie neutronů $E_a \approx 1 \text{eV} \rightarrow v_b = \text{konst} \rightarrow \sigma = \text{konst/v}_a$. Platí jen pro nenabité vyletující částice. Pro nabité jsou v $|H_{\text{fi}}|^2$ průnikové faktory typu Gamowova faktoru:

$$\left| H_{\mathbf{f}\mathbf{i}} \right|^2 \sim e^{-\left(G_{\mathbf{b}} + G_{\mathbf{b}} \right)}$$

c) Exoergické reakce s nabitými částicemi – převažuje závislost na faktoru exp(-Ga).

d) Nepružný rozptyl neutronů – endotermní, v_b závisí silně na energii \rightarrow nad prahem v_a \approx konst. Energie produktu je dána přebytkem energie nad prahem $E_b \approx E_a - E_s$

$$\rightarrow \mathbf{v}_{\mathbf{b}} \sim \mathbf{p}_{\mathbf{b}} \approx \sqrt{2\mathbf{m}_{\mathbf{b}} (\mathbf{E}_{\mathbf{a}} - \mathbf{E}_{\mathbf{S}})} \rightarrow \sigma \approx \sqrt{(\mathbf{E}_{\mathbf{a}} - \mathbf{E}_{\mathbf{S}})}$$

e) Endoergické reakce s produkcí nabité částice – dominuje člen exp(-Ga)

.-.-.-

Produkce a uchovávání antičástic

Produkce antičástic – potřeba dostatku energie

Nutná energie větší než klidová energie (hmotnost) páru částice a antičástice ($E = mc^2$) Vždy vytvoření párů částice antičástice (neplatí pro případ, kdy je částice shodná s antičásticí) Urychlovače jako zdroje energie pro produkci antičástic – vyšší energie urychlených částic \rightarrow možnost antičástic s vyšší hmotností

Rychlosti urychlených částic v \approx c

Produkce většiny antihmotných partnerů k dnes známým částicím

Srážky jader urychlených na vysoké energie → horká a hustá jaderná hmota – zdroj antičástic ✦

Produkce neutrin

I. Úmělé zdroje:

1. Jaderné reaktory: rozpad beta → velké množství antineutrin z rozpadů neutronů a vznikajících radioaktivních jader:

$$\mathrm{n}
ightarrow \mathrm{p}^+ + \mathrm{e}^- + \overline{\varkappa}_\mathrm{e}$$

Vlastnosti tohoto zdroje:

- a. pouze elektronová antineutrina
- b. nesměrovaný
- c. spojité spektrum energií neutrin a jejich relativně nízká energie (~ keV MeV)
- d. vysoká intenzita a stabilita
- e. provoz je spojitý v čase (nemožnost pulsního režimu)

1. Urychlovače:

a. protonové urychlovače s tlustým terčem – využití tříštivých reakcí → produkce hadronů →

- 1. vydělení mezonů π , jejich rozpad na mion a mionové neutrino \rightarrow případně další rozpad μ a produkce ν_{μ} a ν_{e}
- 2. rozpady s produkcí tauonů \rightarrow jejich rozpad na v_{τ}
- b. urychlovače mionů následné urychlení mionů vzniklých v případě a) → jejich rozpad
 → reakce mionů z protony

c. urychlovače elektronů – využití obráceného beta rozpadu: Vlastnosti tohoto zdroje:

- d. produkce různých typů neutrin
- e. široká škála energií a možnost volby energie
- f. možnost směrování a pulsního režimu
- . Přirozené zdroje:
 - 1. Slunce:

Hlavní část energie i produkovaných neutrin pochází z pp cyklu, ve kterém se čtyři protony mění na jádro ⁴He:

 $4p \rightarrow {}^{4}He + 2e^{+} + 2\nu_{e}$

řidčeji z CNO cyklu. Jeho energie závisí na konkrétní reakci.

Vlastnosti zdroje:

- a. zdroj elektronových neutrin
- b. energie v rozsahu řádově ~ 0.01 10 MeV
- c. spojité spektrum
- d. tok neutrin na Zemi ~ $10^{10} \text{ cm}^{-2}\text{s}^{-1}$ (pro $\text{E} \ge 7 \text{ MeV} \rightarrow \sim 10^{6} \text{ cm}^{-2}\text{s}^{-1}$)
- 1. Supernovy:

a) Neutrina vznikají při záchytu elektronů protony:

$$p+e^{\bar{}} \to n+\nu_e$$

v průběhu přeměny normální hvězdy na neutronovou, energie v řádu MeV

b) Během kolapsu hvězdy \rightarrow velmi horká a hustá hmota \rightarrow vyso-koenergetické procesy \rightarrow produkce částic s velmi vysokou energií (i neutrin a antineutrin v_e, v_u a v_t)

1. pro aktivní galaktická jádra a kolabující vesmírné objekty Vlastnosti tohoto zdroje:

a. intenzita klesá se čtvercem vzdálenosti supernovy

- b. zdroj neutrin v_e s energií ~ MeV a neutrin i antineutrin v_e , v_{μ} a v_{τ} (až po TeV)
- c. velmi krátký záblesk prostorově lokalizovaný
- 1. Kosmické záření
 - a. Primární složka: částice s vysokou energií (až ~ 10¹¹ GeV dnešní urychlovače ~ 10⁴ GeV), největší část jsou protony a jádra, část i neutrina a anti neutrina v_e, v_μ a v_τ. Izotropní rozložení přichází ze všech směrů
 Původ: vzdálenější nerozlišitelné zdroje (supernovy, aktivní jádra galaxií, kolabující objekty ...)
 - b. Sekundární složka:

Srážky částic a jader kosmického záření s jádry atmosféry \rightarrow spousta hadronů \rightarrow mezi nimi spousta mezonů π :

 $\pi^+ \rightarrow \mu^+ + \nu_{\mu}$ $\pi^- \rightarrow \mu^- + anti - \nu_{\mu}$

- Intenzivní zdroj neutrin a antineutrin $v_{\mu} a v_{e}$
- poměr mezi počtem ν_{μ} a ν_{e} je $R(\nu_{\mu}/\nu_{e}) = 2$
- zároveň intenzivní zdroj mionů
- 2. Vlastnosti tohoto zdroje:
 - a. Zdroj neutrin a antineutrin $\nu_{\mu}\,a\,\nu_{e}$ ze všech směrů
 - b. I velmi vysoké energie

.-.-.-

Experimentální evidence temné hmoty

Temná (skrytá) hmota – projevuje se pouze gravitačním působením. Náznaky její existence J. Oort (pohyb hvězd v Galaxii) a F. Zwicky (pohyb galaxií v kupě Coma Berenici) – třicáta léta minulého století.

Možnosti zkoumání:

- 1. Zkoumání pohybu hvězd v galaxii, galaxií v kupách, velkorozměrové struktury vesmíru
- 2. Teplota horkého plynu v galaxiích a kupách galaxií
- 3. Využití efektu gravitační čočky

Až 90 % hmoty v kupách tvoří skrytá hmota

4) Nestandardní: ovlivnění průběhu počátku vesmíru – vliv na reliktní záření a průběh primordiální nukleosyntézy

Srážka relativistických těžkých jader

Studujeme srážku ohraničených (nepříliš velkých) objemů jaderné hmoty → potřeba oddělit vliv dynamiky srážky od vlastností jaderné hmoty (její stavové rovnice).

Průběh srážky závisí na parametru srážky → rozdělení nukleonů na:

- 1. Účastníky účastní se srážky (jsou v překrývající se části jader)
- 2. Diváky neúčastní se srážky (nejsou v překrývající se části jader)

Rozdělení nukleonů během srážky

Průběh srážky jader:

Vznik horké a husté hmoty – nedochází k prolnutí jader ale k silné přeměně kinetické energie na tepelnou a excitační

Intenzivní vznik tepla \rightarrow expanze

Čas expanze je jen 10 až 100 krát větší než charakteristický čas procesů navozujících rovnováhu. Časový průběh (pokud vznikne kvark-gluonové plazma):

- V čase 3·10⁻²⁴s nastolení tepelné rovnováhy rozptylem kvarků gluonů (střední volná dráha kvarků je 0.5 fm)
- 2. Systém expanduje a chladne, v $2 \cdot 10^{-23}$ s dosáhne kritické teploty a začne hadronizace
- 3. Pro fázový přechod prvního druhu, existuje déle než $3 \cdot 10^{-23}$ s koexistence různých fází.
- 4. Po hadronizaci systém dále expanduje až na objemy 10^{4} 10^{5} fm³, kdy dojde k "vymrznutí"

Předpokládaný průběh srážky při vzniku kvark-gluonového plazmatu Kolektivní toky částic:

- 1. V rovině srážky: "side-splash" emise nukleonů z kolizní zóny
 - "bounce-off" odražení nukleonů diváků (ba-rometr tlaku)
- 2. Kolmo na rovinu srážky vystříknutí ("squeeze-out")

Absorpce částic výletujících z horké a husté zóny v chladné hmotě tvořené diváky \rightarrow asymetrie v produkci částic \rightarrow závisí na rychlosti průletu nukleonů diváků a okamžiku zrodu částic Kolektivní toky částic:

.-.-.-

Původ vesmírného vodíku

t ~ 10^{-4} s T ~ 2×10^{12} K chladnutí \rightarrow hmota se mění z podoby volného seskupení kvarků a gluonů (kvark-gluonového plazmatu) do seskupení hadronů Nevetílé vznilení a zapilení názmách hadronů

Neustálé vznikání a zanikání různých hadronů a antihadronů

Zmenšování teploty → zmenšování hustoty energie → postupné ubývání těžších hadronů (rezonancí) Zůstávají baryony s nejmenší klidovou hmotností - nukleony (protony a neutrony)

a vznik helia

t ~ 1 s T ~ 10^{10} K jsou možné vázané stavy nukleonů \rightarrow vznikají lehká jádra

t ~ 100 s T ~ 10⁹ K energie nestačí na reakci p + e⁻ \rightarrow n + v_e : (rozpad neutronů nevázaných v jádrech T_{1/2} = 10.4 m)

zůstávají pouze protony (vodík) a určité množství lehkých prvků (hlavně ⁴He - má velmi vysokou vazbovou energii)

t ~ 400 000 let T ~ 4000 K - zachycení elektronů jádry → vznik atomů → počátek chemie

t ~ stovky milionů let - formování hvězd a galaxií - vznik prvků ve hvězdách

Změna hmotností a dob života vektorových mezonů v husté a horké jaderné hmotě

K tomuto jevu dochází i v husté hadronové hmotě, ale souvisí přímo s nastolováním chirální symetrie, které předpovídá QCD. Jeho experimentální potvrzení by bylo důležitý důkaz těch vlastností QCD, které vedou ke vzniku kvark-gluonového plazmatu.

Přímé studium raných fází sražky pomocí částic rozpadajících se uvnitř horké a husté jaderné hmoty na leptony (neinteragují silně). Velmi malá pravděpodobnost rozpadu na leptony ve srovnání s rozpady na hadrony:

Mezon	Rozpad	Pravděpodobnost	Hmotnost	Doba života
ro	e ⁺ e ⁻	(4.5.10-5)	770 MeV	1 fm/c
omega	e ⁺ e ⁻	(7.2.10-5)	782 MeV	22 fm/c
FÍ	e ⁺ e ⁻	(3.1.10-4)	1019 MeV	44 fm/c

Experiment NA45/CERES (malá pravděpodobnost rozpadu = velké pozadí). Využití Čerenkovova záření k identifikaci rychlých lehkých leptonů - detekce kroužků vytvořených Čerenkovovým světlem. pozorováno zvýšení produkce e⁺e⁻ párů v oblasti invariantních hmotností menší než hmotnost ro mezonů při jadro-jaderných srážkách

Pro urychlovač SIS v GSI Darmstadt se připravuje podobný spektrometr HADES. Lepší rozlišení invariantních hmotností umožní studovat zmenšení hmotnosti ro mezonů přímo.

.-.-.-

Potlačení produkce J/PSÍ mezonů

Jde o nejvýznamnější příznak fázového přechodu. Mezon J/PSÍ je silně vázaným systémem kvarku *c* a antikvarku *c*. V kvark-gluonovém plazmatu se díky odstínění těchto kvarků možnost vzniku tohoto mezonu silně snižuje.

Experiment NA50 studoval produkci J/PSÍ mezonů v závislosti na počtu nukleonů srážejících se jader, jejich energii a centralitě srážky (z těchto parametrů se dá odvodit dosažená hustota energie epsilon).

Zdá se, že naměřené hodnoty potlačení produkce J/PSÍ mezonů nelze vysvětlit bez předpokladu vzniku nového stavu hmoty.

Přímá informace z fáze kvark-gluonového plazmatu:

Detekce přímých fotonů vznikajících při rozptylech kvarků a gluonů. Zatím nepozorovány. V experimentech na SPS určen pouze horní limit jejich příspěvku 5-7 % z příspěvku fotonů vzniklých v hadronové fázi. V experimentech na RHIC a LHC by však měly převažovat, takže snad získáme první přímou informaci z fáze kvark-gluonového plazmatu.

+

Reakce přes složené jádro

Reakce při kterých se energie nalétávajícího projektilu přerozdělí na více nukleonů terčíkového jádra \rightarrow vzniká excitované složené jádro \rightarrow kumulace energie \rightarrow výlet jednoho nebo více nukleonů. Rozpad složeného jádra 10⁻¹⁶s.

Různé excitované hladiny složeného jádra - doba života hladin spojena s jejich šířkou Heisenbergovým principem neurčitosti

$\Gamma\tau\approx h$

Rozdělení reakcí přes složené jádro:

1) Rezonanční – vzdálenost hladin $\Delta E \gg \Gamma \rightarrow \sigma(E)$ rezonanční charakter

2) Nerezonanční - $\Delta E \ll \Gamma \rightarrow \sigma(E)$ nerezonanční charakter – statistický způsob popisu

Možná interpretace reakce přes složené jádro v rámci kapkového modelu:

vybuzené složené jádro – ohřátá kapka vody

snížení energie výletem nukleonů – ochlazení odpařením molekul

 \rightarrow vypařovací modely

Dva nezávislé procesy:

- 1. Vznik složeného jádra
- 2. Rozpad složeného jádra

Účinný průřez σ_{ab} reakce z vstupním kanálem a a výstupním b přes složené jádro C:

$$\sigma_{ab} = \sigma_{aC} P_{t}$$

kde σ_{aC} je účinný průřez pro vznik složeného jádra a P_b je pravděpodobnost rozpadu složeného jádra do kanálu b.

$$\sum P_b = 1$$

Součet přes všechny výstupní kanály: **b** Parciální šířka hladiny Γ_b – šířka vůči rozpadu do kanálu b:

$$\Gamma = \sum_{b} \Gamma_{b}$$

Vztah mezi Γ_b a P_b: P_b= Γ_b/Γ kde

Závislost vazebné energie na nukleon na počtu nukleonů

Možnosti získání energie spalováním vodíku případně těžších jader - zdroje energie → ohřev hvězdy → zabránění gravitačnímu kolapsu hvězdy & zdroj různých chemických prvků Základní reakce H → He – reakce jader vodíku (proton – protonová reakce) nebo reakce jader vodíku s těžšími prvky – působí jako katalyzátory (CNO cyklus):

A) p-p řetězec

B) CNO cyklus

C) 3α-proces (Salpeterωv)

Velmi silná závislost na teplotě

Ještě vyšší teploty \rightarrow vznik ¹⁶O, ²⁰Ne, ²⁴Mg ... dalším spalováním helia, spalování ¹²C

Závislost rychlosti průběhu (velikosti vydělené energie) reakcí na teplotě

Vznik těžších elementů

Na vzniku těžších prvků se podílejí (závislost na vazebné energii):

α-proces: syntéza prvků pomocí ⁴He procesem (α,γ), vznikajv jádra až po ⁴⁰Ca (T = 10⁹K) e-proces: T = 4·10⁹K a N_p/N_n = 300 → vznik prvků skupiny železa: V, Cr, Mn, Fe, Co, Ni s-proces: záchyt neutronů jádry lehkých prvků nebo prvků skupiny železa. Málo neutronů - pomalý "slow" vůči rozpadu beta

Zdroj neutronů: reakce ${}^{13}C(\alpha,n){}^{16}O$ a ${}^{22}Ne(\alpha,n){}^{25}Mg$

r-proces: hodně neutronů \rightarrow záchyt neutronů probíhající rychle "rapid" vzhledem k rozpadu beta \rightarrow vznik těžkých prvků (i velmi nestabilní izotopy s velkým přebytkem neutronů). Jen při hvězdných explozích

p-proces: prostředí plné vodíku \rightarrow vznik vzácnějších lehkých prvků (T = 2.5·10⁹K)

Nutná znalost vlastností celé škály možných reakcí → zkoumání důležitých astrofyzikálních reakcí na urychlovačích

Stačí nižší energie ~ 1 - 10 MeV na nukleon

Potřebné znát reakce i krátce žijících jader → radioaktivní svazky

+

Relativistické invariantní proměnné

Při rozptylu dvou částic s klidovými hmotnostmi m_1 a m_2 můžeme dostat rychlost těžiště pomocí celkové relativistické hybnosti a celkové relativistické energie:

$$\frac{\vec{v}_{CM}}{c} \equiv \vec{\beta}_{CM} = \frac{(\vec{p}_1 + \vec{p}_2)c}{E_1 + E_2}$$
.....(1.a)

Označme m_1 hmotnost projektilu a m_2 hmotnost terče. Použijeme laboratorní kinematické proměnné a dostaneme:

Nerelativistické přiblížení ($m_1c^2 > p_1c$):

$$\vec{\beta}_{CM} = \frac{m_1 \vec{v}_1 c}{m_1 c^2 + m_2 c^2} = \frac{m_1 \vec{v}_1}{(m_1 + m_2)c}$$
(1.c)

Ultrarelativistické přiblížení (m₁c² < < p_1 c a m₂c² < < p_1 c):

$$\begin{split} \mathscr{B}_{\rm CM} &= \left| \vec{\mathscr{B}}_{\rm CM} \right| = \frac{1}{\sqrt{1 + \left((m_1 c^2) / (p_1 c) \right)^2} + (m_2 c^2) / (p_1 c)}} = \frac{\sqrt{1 + \left((m_1 c^2) / (p_1 c) \right)^2} - (m_2 c^2) / (p_1 c)}{1 + \left((m_1 c^2) / (p_1 c) \right)^2 - \left((m_2 c^2) / (p_1 c) \right)^2} \cong \\ &\cong \sqrt{1 + \left((m_1 c^2) / (p_1 c) \right)^2} - (m_2 c^2) / (p_1 c) \cong 1 - \frac{m_2 c}{p_1} - \frac{1}{2} \left(\frac{m_1 c}{p_1} \right)^2 \end{split}$$

Pro $m_1 \approx m_2$:

$$\mathscr{S}_{CM} \cong (1 - m_2 c/p_1)$$

A pro:

 $\gamma_{\rm CM} = (1 - \beta_{\rm CM}^2)^{-1/2} = \left[(1 + \beta_{\rm CM}) (1 - \beta_{\rm CM}) \right]^{-1/2} \cong \left[2 (m_2 c/p_1) \right]^{-1/2} = \sqrt{p_1 / (2m_2 c)}$ Odvoď me obecný relativistický vztah pro $\gamma_{\rm CM}$: Z rovnice (1.b):

$$\beta_{CM}^2 = \frac{p_1^2 c^2}{\left(E_1 + m_2 c^2\right)^2}$$

Takže ($m_1^2 c^4 = E_1^2 - p_1^2 c^2$):

$$1 - \beta_{\rm CM}^2 = \frac{E_1^2 + 2E_1m_2c^2 + m_2^2c^4 - p_1^2c^2}{(E_1 + m_2c^2)^2} = \frac{m_1^2c^4 + m_2^2c^4 + 2E_1m_2c^2}{(E_1 + m_2c^2)^2}$$

a dostaneme rovnici:

$$\gamma_{\rm CM} = (1 - \lambda_{\rm CM}^{2})^{-1/2} = \frac{E_1 + m_2 c^2}{(m_1^2 c^4 + m_2^2 c^4 + 2E_1 m_2 c^2)^{1/2}} \dots (2)$$

která se pro limity $E_1 = p_1 c >> m_1 c^2$ a $p_1 c >> m_2 c^2$ redukuje na dříve uvedenou ultrarelativistickou limitu.

Veličina v děliteli (2) je invariantní skalar. Což lze odvodit z čtverce následujícího čtyřvektoru v laboratorní soustavě ($p_2 = 0$):

$$s = (E_1 + E_2)^2 - (\vec{p}_1 + \vec{p}_2)^2 c^2 = (E_1 + m_2 c^2)^2 - p_1^2 c^2 =$$
$$= E_1^2 + m_2^2 c^4 + 2E_1 m_2 c^2 - p_1^2 c^2 = m_1^2 c^4 + m_2^2 c^4 + 2E_1 m_2 c^2$$

Tento skalár má stejnou hodnotu v libovolné vztažné soustavě. V těžišťové soustavě má jednoduchou interpretaci (celková hybnost v této souřadné soustavě je nulová):

$$s = m_1^2 c^4 + m_2^2 c^4 + 2E_1 m_2 c^2 = (\widetilde{E}_1 + \widetilde{E}_2)^2 - (\vec{\widetilde{p}}_1 + \vec{\widetilde{p}}_2)^2 c^2 =$$
$$= (\widetilde{E}_1 + \widetilde{E}_2)^2 = \widetilde{E}_{TOT}^2$$

a s je čtverec celkové energie dostupné v těžišťové soustavě. Pak

$$\gamma_{\rm CM} = \frac{{\rm E}_1 + {\rm m}_2 {\rm c}^2}{\widetilde{\rm E}_{\rm TOT}} = \frac{{\rm E}_{\rm TOT}}{\widetilde{\rm E}_{\rm TOT}}$$

Invariantní proměnná s je často využívána pro popis vysokoenergetických srážek. Pro vstřícné svazky se často udává právě odmocnina s.

Často užívaná je i veličina t – čtyřimpuls přenesený ve srážce (čtverec rozdílu čtyřvektorů energie a hybnosti projektilu před a po srážce):

Protože platí zákony zachování energie a hybnosti, můžeme t vyjádřit i v terčových proměných:

proměná t je invariantní a můžeme ji počítat v libovolné vztažné soustavě. Doplňme ještě proměnnou u:

$$\mathbf{u} = (\mathbf{E}_1^{\mathbf{f}} - \mathbf{E}_2^{\mathbf{i}})^2 - (\vec{\mathbf{p}}_1^{\mathbf{f}} - \vec{\mathbf{p}}_2^{\mathbf{i}})^2 \mathbf{c}^2 \qquad_{\text{nebo}} \mathbf{u} = (\mathbf{E}_2^{\mathbf{f}} - \mathbf{E}_1^{\mathbf{i}})^2 - (\vec{\mathbf{p}}_2^{\mathbf{f}} - \vec{\mathbf{p}}_1^{\mathbf{i}})^2 \mathbf{c}^2$$

Proměnné t, u a s se nazývají lorentzovsky invariantní Mandelstamovi proměnné, jejichž součet obecně splňuje rovnici:

$$s + t + u = \left(m_1^2 c^4 + m_2^2 c^4\right)_i + \left(m_1^2 c^4 + m_2^2 c^4\right)_f$$
$$\widetilde{\mathbf{F}}^i = \widetilde{\mathbf{F}}^f$$

Podívejme se pro příklad na pružný rozptyl v těžišťové soustavě (pro obě částice platí

$$\begin{aligned} \mathbf{a} \quad |\widetilde{\mathbf{p}^{i}}| &= |\widetilde{\mathbf{p}^{f}}| = |\widetilde{\mathbf{p}}| = \widetilde{\mathbf{p}} \\ \mathbf{t} &= -\left((\widetilde{\mathbf{p}_{1}^{f}})^{2} + (\widetilde{\mathbf{p}_{1}^{i}})^{2} - 2\widetilde{\mathbf{p}_{1}^{f}}\widetilde{\mathbf{p}_{1}^{i}} \right) \cdot \mathbf{c}^{2} = -2\widetilde{\mathbf{p}}^{2}\mathbf{c}^{2}(1 - \cos\widetilde{\mathbf{z}}). \end{aligned}$$

Protože −1 ≤ cos(theta) ≤ 1 platí t < 0. Ovšem z (3a,b) se můžeme na proměnou t dívat jako na čtverec hmotnosti vyměňované částice (s energií a hybností). Imaginární hmotnost → virtuální částice. Takové diagramy byly zavedeny R. Feynmanem pro výpočet rozptylových amplitud v QED a jsou označovány jako Feynmanovy grafy. Zavádí se proměná q² (platí q²c² = -t), která je v nerelativistickém přiblížení rovna kvadrátu hybnosti přenesené na terčíkové jádro q² ≈ (m₂v₂)².

+

 $\label{eq:constraint} \begin{array}{l} \mbox{Relativistické vlastnosti} \\ \mbox{Vztah mezi celkovou energií a hmotností: } E = mc^2 \\ \mbox{Pro klidovou energii soustavy v klidu: } E_0 = m_0c^2 \\ \mbox{Pro kinetickou energii pak: } E_{KIN} = E - E_0 = mc^2 - m_0c^2 \\ \mbox{Pro relativistické systémy možnost určení změny energie měřením změny hmotnosti a obráceně. } \\ \mbox{Nerelativistické objekty } (E_{KIN} << m_0c^2) - změny hmotnosti neměřitelné. } \end{array}$

(V dalším jsou p a v velikost impulsu a rychlosti částice.) Vztah mezi energií E a impulsem p a kinetickou energií $E_{KIN}=f(p)$: $E = [p^2c^2 + (m_0c^2)^2]^{1/2}$ tedy $E_{KIN} = [p^2c^2 + (m_0c^2)^2]^{1/2} - m_0c^2$ Nerelativistické přiblížení (p < < m_0c) - princip korespondence: $E_{KIN} = m_0c^2 [p^2/(m_0c)^2 + 1]^{1/2} - m_0c^2 = p^2/2m_0 = (m_0v^2)/2$ (pro odmocninu bereme první členy binomického rozvoje - platí (1+x)ⁿ = 1+nx a (1-x)ⁿ = 1-nx pro x< < 1)

Ultrarelativistické přiblížení (p >> m_0c): $E_{KIN} = E = pc$

Pro rychlost v platí: $v = pc^2/E_{KIN}$ pro p >> m₀c nebo m₀ = 0: v = cInvariantní veličina: m₀c² = [E - p²c²]^{1/2}

Relativistický popis – nerelativistické a ultrarelativistické přiblížení Celková energie je z hybností spojená relativistickým vztahem:

$$E = \sqrt{\vec{p}^2 c^2 + m_0^2 c^4}$$

V následujícím označíme klidovou hmotnost m \equiv m₀. Klidová hmotnost a klidová energie jsou invariantní vůči lorentzovské transformaci (jsou stejné ve všech inerciálních souřadných soustavách) a tedy invariantní je i veličina (lze vybrat nejvhodnější souřadnou soustavu, ve které ji určíme):

$$E^2 - \vec{p}^2 c^2 = m^2 c^4$$

To platí pro jednotlivou částici, ale i pro soustavu v daném čase:

~

Vyjádříme kinetickou energii a hybnost:

$$E_{KIN} = E - mc^2$$
 $\vec{p}^2 = \frac{E^2}{c^2} - m^2 c^2$

Odvodíme prahová energie nalétávající částice (předpokládáme nalétávající částici na pevným terč $E_2 = m_2 c^2$):

V těžišťové soustavě pro prahovou energii platí, že suma kinetických energií soustavy v konečném stavu je nulová. Vyjádříme invariant (1) pro počáteční stav systému v laboratorní a pro konečný v těžišťové souřadné soustavě:

$$(E_1 + m_2 c^2)^2 - \vec{p}_1^2 c^2 = \left(\sum_{j=1}^{n_f} m_j c^2\right)_f^2$$

Dosadíme za p²:

$$(E_1 + m_2 c^2)^2 - E_1^2 + m_1^2 c^4 = \left(\sum_{j=1}^{n_f} m_j' c^2\right)_f^2$$
$$2E_1 m_2 c^2 + m_1^2 c^4 + m_2^2 c^4 = \left(\sum_{j=1}^{n_f} m_j c^2\right)_f^2$$

a $E_{KIN 1}$:

$$2E_{\text{KIN1}}m_{2}c^{2} + 2m_{1}m_{2}c^{4} + m_{1}^{2}c^{4} + m_{2}^{2}c^{4} = \left(\sum_{j=1}^{n_{f}}m_{j}'c^{2}\right)_{f}^{2}$$

Dostáváme:

$$E_{\text{THR}} = E_{\text{KIN1}} = \frac{\left(\sum_{j=1}^{n_{\text{f}}} m_{j}^{\prime} c^{2} + m_{1} c^{2} + m_{2} c^{2}\right) \left(\sum_{j=1}^{n_{\text{f}}} m_{j}^{\prime} c^{2} - m_{1} c^{2} - m_{2} c^{2}\right)}{2m_{2} c^{2}}$$

Protože:

$$Q = \sum_{j=1}^{n_{f}} m'_{j} c^{2} - m_{1} c^{2} - m_{2} c^{2}$$

dostaneme

$$E_{\text{THR}} = \frac{\left(Q + 2m_1c^2 + 2m_2c^2\right)Q}{2m_2c^2} = Q \left(1 + \frac{m_1}{m_2} + \frac{Q}{m_2c^2}\right)$$

V nerelativistickém přiblížení (Q<<m₂c²) dostaneme známý vztah.

$$E_{\text{THR}} = Q \left(1 + \frac{m_1}{m_2} \right)$$

V ultrarelativistické přiblížení (Q >> m_1c^2 a Q >> m_2c^2): $E_{THR} = Q^2/(2m_2c^2)$ Srovnáme úhly výletu v laboratorní a těžišťové soustavě:

Lorentzova transformace hybnosti a energie z těžišťové soustavy do laboratorní je (těžiště se pohybuje ve směru osy y):

$$p_{x} = \frac{\widetilde{p}_{x} + \frac{v_{CM}E}{c^{2}}}{\sqrt{1 - \left(\frac{v_{CM}}{c}\right)^{2}}} \qquad E = \frac{\widetilde{E} + v_{CM}\widetilde{p}_{x}}{\sqrt{1 - \left(\frac{v_{CM}}{c}\right)^{2}}}$$

Použijeme polární soustavu souřadnic:

$$p_x = p\cos \vartheta \quad p_y = p\sin \vartheta \quad a \quad \widetilde{p}_x = \widetilde{p}\cos \widetilde{\vartheta} \quad \widetilde{p}_y = \widetilde{p}\sin \widetilde{\vartheta}$$

Odvodíme vztah pro úhel theta :

$$\tan \varepsilon^{g} = \frac{p_{y}}{p_{x}} = \frac{\widetilde{p}_{y}\sqrt{1 - \left(\frac{v_{CM}}{c}\right)^{2}}}{\widetilde{p}_{x} + \frac{v_{CM}\widetilde{E}}{c^{2}}} = \frac{\widetilde{p}\sin \widetilde{\varepsilon}^{g}\sqrt{1 - \left(\frac{v_{CM}}{c}\right)^{2}}}{\widetilde{p}\cos \widetilde{\varepsilon}^{g} + \frac{v_{CM}\widetilde{E}}{c^{2}}} = \frac{\widetilde{v}\sin \widetilde{\varepsilon}^{g}\sqrt{1 - \left(\frac{v_{CM}}{c}\right)^{2}}}{\widetilde{v}\cos \widetilde{\varepsilon}^{g} + v_{CM}}$$

V nerelativistickém přiblížení, kdy v_{CM} << c dostaneme známý vztah, který jsme odvodily již dříve. V praxi se používá místo rychlosti těžiště kinetická energie nalétávající částice:

Rychlost těžiště v laboratorní soustavě je dána poměrem celkového impulsu a celkové energie systému v laboratorní soustavě:

$$\beta_{\rm CM} \equiv \frac{v_{\rm CM}}{c} = \frac{p_{\rm 1}c}{E_{\rm KIN1} + m_{\rm 1}c^2 + m_{\rm 2}c^2}$$

Využijeme vztahu mezi kinetickou energií a hybností:

$$E_{\text{KIN1}} = \sqrt{m_1^2 c^4 + p_1^2 c^2} - m_1 c^2 \qquad p_1 c = \sqrt{E_{\text{KIN1}}^2 - 2E_{\text{KIN1}} m_1 c^2}$$

Dostaneme:

$$\beta_{\rm CM} = \frac{\sqrt{E_{\rm KIN1}^2 + 2E_{\rm KIN1}m_1c^2}}{E_{\rm KIN1} + m_1c^2 + m_2c^2}$$

Tento vztah lze dosadit do vztahu pro úhel rozptylu. Podíváme se na speciální případ, kdy úhel rozptylu v těžišťové soustavě je $\pi/2$:

$$\tan e^{g} = \frac{\widetilde{v}\sqrt{1-\rho_{CM}^{2}}}{v_{CM}} = \frac{\widetilde{v}}{c}\sqrt{\frac{(m_{1}+m_{2})^{2}c^{4}+2E_{KINI}m_{2}c^{2}}{E_{KINI}^{2}+2E_{KINI}m_{1}c^{2}}}$$

V ultrarelativistickém přiblížení ($E_{KIN 1} >> m_1 c^2$ a $E_{KIN 1} >> m_2 c^2$) dostaneme:

$$e^{g_{\infty}} \tan e^{g_{\infty}} \frac{\widetilde{v}}{c} \sqrt{\frac{2m_2c^2}{E_{KIN1}}} \rightarrow 0$$

Je vidět, že v takovém případě se produkují částice v laboratorní soustavě do velmi malého úhlu.

Rezonance

Prvek matice přechodu $|H_{fi}|^2$ a tedy i účinný průřez σ_{ab} se nemusí měnit jen pozvolna. Reakce jdoucí přes složené jádro \rightarrow kromě pozvolného průběhu výskyt fluktuací - rezonančních struktur v průběhu $|H_{fi}|^2$ a σ_{ab}

Rezonance způsobeny reakcemi přes složené jádro: $a+A\to C^*\to b+B$ (zobrazena i reakce $a+A\to C^*\to \gamma+C$)

Příklad rezonančního charakteru spektra reakcí přes složené jádro (typický příklad reakce s pomalými neutrony)

Pro oblast okolo 1 – 20 MeV rezonance hustě blízko sebe a jsou široké \rightarrow nedají se rozdělit \rightarrow vzniká kontinuum (statistická oblast)

Rezonanční maximum v průběhu účinného průřezu v místě izolované (od ostatních hladin) oddělené hladiny E_{res}. Pomocí kvantové mechaniky lze odvodit, že tvar rezonance popisuje Breitův-Wignerův vzorec:

$$\sigma_{ab} = \frac{\pi}{k_a^2} \frac{\Gamma_a \cdot \Gamma_b}{(E - E_{res})^2 + \frac{1}{4}\Gamma^2}$$

Součtem přes všechny výstupní kanály (i pružný rozptyl) → totální účinný průřez vzniku složeného jádra:

$$\sigma_{aC} = \frac{\pi}{k_a^2} \frac{\Gamma_a \cdot \Gamma}{(E - E_{res})^2 + \frac{1}{4}\Gamma^2}$$

Platí:

$$\sigma_{ab} = \frac{\pi}{k_a^2} \frac{\Gamma_a \cdot \Gamma_b}{(E - E_{res})^2 + \frac{1}{4}\Gamma^2} = \frac{\pi}{k_a^2} \frac{\Gamma_a \Gamma}{(E - E_{res})^2 + \frac{1}{4}\Gamma} \cdot \frac{\Gamma_b}{\Gamma} = \sigma_{aC} \cdot \frac{\Gamma_b}{\Gamma}$$

Tedy nezávislost vzniku a rozpadu složeného jádra.

Pro E = E_{res} platí (předpokládáme pružný σ_{aa} a jeden nepružný σ_{ab} kanál $\rightarrow \Gamma = \Gamma_{a} + \Gamma_{b}$):

$$\sigma_{aa} = 4 \frac{\pi}{k_a^2} \frac{\Gamma_a^2}{\Gamma^2} \qquad \qquad \sigma_{ab} = 4 \frac{\pi}{k_a^2} \frac{\Gamma_b \Gamma_a}{\Gamma^2}$$

Maximum pro pružnou část ($\Gamma_{b=0}, \Gamma_a = \Gamma$):

$$\sigma_{aamax} = 4 \frac{\pi}{k_a^2}$$

Maximum pro nepružnou část ($\Gamma_{b} = \Gamma_{a} = \Gamma/2$):

$$\sigma_{abmax} = \frac{\pi}{k_a^2}$$

Rezonanční rychlé změny jsou dány reakcemi přes složené jádro, pomalé změny způsobují přímé reakce

ŧ